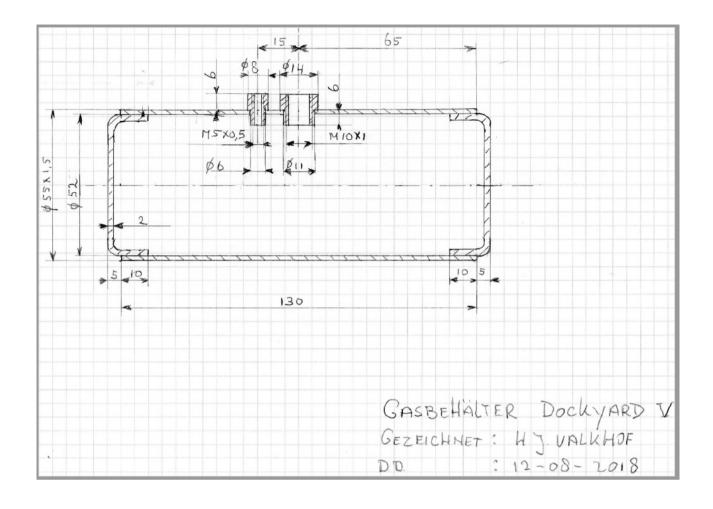

Gastank Berechnung:

Randbedingungen: Propan/Butan Gasgemisch maximal 50°C Gasdruck 12 bar

Propan und sein Nachbar Butan gehören zur Gruppe der Kohlenwasserstoffe und sind hauptsächlich dadurch bekannt geworden, weil sie unter relativ geringem Druck flüssig sind. Dadurch ist es möglich, eine verhältnismäßig große Menge Flüssiggas auf relativ kleinem Raum unterzubringen. Die Energiemenge ist dabei hoch, gemessen an anderen Brennstoffarten. Durch Absenkung des Druckes im Behälter wandelt sich das Flüssiggas in eine reine Gasform geringeren Druckes um, das problemlos in entsprechenden Brennern verwendet werden kann. Ein weiterer großer Vorteil besteht darin, daß der Gasdruck im Behälter nicht allzu hoch ist und somit keine schweren, dickwandigen Tanks erforderlich sind.



keine Korrosions-Zugabe c1

keine Verschleiß-Zugabe c2

Material R200 Gelötet (geglüht) >> K/S = 50 N/mm2

Das gilt für das nahtlose Mantelrohr und ebenso für das Blech der Böden .

Temperatur °C	Zulässige Spannung K/S in MPa für Auslegungsdauer in h								
	Cu-DHP					CuZn20Al2			
	R200	R200 ¹⁾	R220	R220 ¹⁾	R2	R250 R340		340	
		bis 10	0 000		10 000	100 000	10 000	100 000	10
20/50	57	50	63	55	100	100	87	87	- 9
100 110 120 130 140	57 56 54 53 51	50 49 48 46 46	63 62 60 59 57	55 54 53 51 50	90 89 89 88 88	90 69 89 88 88	83 83 83 83	83 83 83 83 83	
150 160 170 180 190	50 49 47 46 44	44 43 41 40 39	56 54 53 51 50	49 48 46 45 44	87 86 85 85 84	87 86 85 85 85	83 83 82 81 81	83 83 81 70 59	
200 210 220 230 240	43 41 40 39 37	38 36 35 34 33	49 47 46 44 43	43 41 40 39 38	83 83 82 81 78	83 82 69 55 42	77 67 57 46 34	48 38 29 21 15	
250	36	31	41	36	66	28	24	10	

Mantel: Cu-Rohr ø55x1,5

keine nennenswerten Verschwächungen (grosse Auschnitte) im Mantelrohr Verschwächungsfaktor V =1,0

Seite 2 AD 2000-Merkblatt B 1, Ausg. 10.2000

5 Berechnung

Die erforderliche Wanddicke s beträgt bei Zylinderschalen

$$s = \frac{D_a \cdot p}{20 \frac{K}{5} \cdot v + p} + c_1 + c_2 \tag{2}$$

bzw. bei Kugelschalen

$$s = \frac{D_a \cdot p}{40\frac{K}{S} \cdot v + p} + c_1 + c_2 \tag{3}$$

6 Kleinste Wanddicke

- 6.1 Die kleinste Wanddicke nahtloser, geschweißter oder hartgelöteter Zylinder- und Kugelschalen wird mit 2 mm festgelegt.
- 6.2 Abweichend von Abschnitt 6.1 gilt für die kleinste Wanddicke bei Zylinder- und Kugelschalen aus Aluminium und dessen Legierungen 3 mm.

Präsentations Modelle, Funktionsmodelle!

- 6.3 Ausnahmen siehe AD 2000-Merkblatt B 0 Abschnitt 10.
- 6.4 Bei Wärmeaustauscherrohren¹) darf die kleinste Wanddicke gemäß Abschnitt 6.1 und 6.2 unterschritten werden.

7 Schrifttum

- Class, I., Jamm, W., u. E. Weber: Berechnung der Wanddicke von innendruckbeanspruchten Stahlrohren. VDI-Z 97 (1955) Nr. 6, S. 159/67.
- [2] Schwaigerer, S., u. E. Weber: Wanddickenberechnung von Stahlrohren gegen Innendruck; Erläuterungen zu DIN 2413, Ausgabe 1972. TÜ 13 (1972) Nr. 3, S. 74/78.
- [3] Zellerer, E., u. H. Thiel: Beitrag zur Berechnung von Druckbehältern mit Ringversteifungen. Die Bautechnik (1967) H. 10, S. 333/39.
- [4] Mang, F.: Festigkeitsprobleme bei örtlich gestützten Rohren und Behältern. Rohre – Rohrleitungsbau – Rohrleitungstransport (1970) H. 4, S. 207/13, u. H. 5, S. 267/79; (1971) H. 1, S. 23/30.

S = 0,33 mm (mindest-Maß): gewählt 1,5mm (handelsübliches Cu-Rohr)

AD 2000-Merkblatt

AD 2000-Merkblatt B 5, Ausg. 08.2007 Seite 9

Tafel 1. Berechnungsbeiwerte unverankerter runder ebener Böden und Platten ohne zusätzliches Randmoment

Ausführungsform (nur schematische Darstellung)	Voraussetzung	Berechnungs- beiwert C	
a) gekrempter ebener Boden	Krempenhalbmesser:	0,30	
A STATE OF THE STA	D _k	Mindest- maß	
hier: 5=2mm , 1,3xs=2,6mm=rmin	bis 500 über 500 bis 1400 über 1400 bis 1600 über 1600 bis 1900 über 1900	30 35 40 45 50	
Mindestbordhöhe h = 7mm	und r ≥ 1,3 s 2. Bordhöhe: h ≥ 3,5 s		
			1.00

End - Böden:

ebene, gekrempte Böden ø52mm x 2mm dick;

Eckradius ca.3mm -> C= 0,3 : D1= 52-2*(2+3)mm= 42mm

AD 2000-Merkblatt

Seite 2 AD 2000-Merkblatt B 5, Ausg. 08.2007

6 Berechnung

- 6.1 Unverankerte runde ebene Böden und Platten ohne zusätzliches Randmoment
- **6.1.1** Die erforderliche Wanddicke s unverankerter runder ebener Böden und Platten ohne zusätzliches Randmoment beträgt

$$s = C \cdot D_1 \cdot \sqrt{\frac{p \cdot S}{10 K}} + c_1 + c_2 \tag{2}$$

Die Berechnungsbeiwerte C und die Berechnungsdurchmesser D_1 sind entsprechend Tafel 1 einzusetzen.

K/S=50 >> S/K = 0.02

$$S = 0.3*42*\sqrt{(12*0.02/10)+0+0}$$

 $S = 12,6 * \sqrt{0,024}$

S = 12.6 * 0.155

S = 1,95 mm (mindest-Maß): gewählt 2,0 (handelsübliches Cu-Blech)

Das ist knapp unter dem Mindestmaß! Ein Zugankerstab von Bodenmitte zu Bodenmitte längs durch den Tank wäre denkbar als Verstärkung. Einfacher wäre es gewölbte Böden (Klöpperboden oder elliptisch gewölbte Böden) zu verwenden.

Bei der Gefahrenanalyse wurde nach AD 2000 Z2 Seite3 lfd.Nr.3 Stufe I zugrunde gelegt

Lfd. Nr.	Mögliche Gefahren	DGR Anhang I Abschnitt	Grundlegende Sicherheits- anforderungen	Stufe I: Maßnahmen zur Beseitigung oder Verminderung der Gefahren bezogen auf AD 2000-Merkblatt Abschnitt	Stufe II: Schutzmaß- nahmen gegen nicht zu beseiti- gende Gefahren (Beispiele)	Stufe III: Hinweise auf Restgefahren in der Betriebsanleitung (Beispiele)
3	Zu: Mechani- sches Versagen aufgrund fal- scher Ausle- gungs- und Be- rechnungs- methoden	2.2.3 b)	Nachweis der Belast- barkeit durch geeignete Auslegungsberechnungen - Berechnungsdrücke ≥ maximal zulässige Drücke - Angemessene Sicher- heitsmargen für Berech- nungstemperaturen - Berücksichtigung aller möglichen Tempera- tur- und Druckkombi- nationen - Maximale Spannung und Spannungskon- zentrationen innerhalb sicherer Grenzwerte	B 0 Abschnitt 4 N 1 Abschnitt 4 N 2 Abschnitt 8 B 0 Abschnitt 5 N 1 Abschnitt 4 N 2 Abschnitt 4 N 2 Abschnitt 4 Und 5 N 1 Abschnitt 4 N 2 Abschnitt 8 N 4 Abschnitt 6 B 0 Abschnitt 6 B 0 Abschnitt 6 N 1 Abschnitt 6 N 1 Abschnitt 6 N 1 Abschnitt 4.4 N 2 Abschnitt 8 N 4 Abschnitt 8 N 4 Abschnitt 8		

Der Hydrostatische Prüfdruck ist mach AD2000 HP30 Seite 3 mit Berechnungsdruck = maximal zulässigem Betriebsdruck * 1,25 (Raumtemperatur) zugrunde gelegt . Hier also 12 bar * 1,43 = 17,2 bar .

Bei Doppelmantelbehältern sind ggf. zusätzliche Betrachtungen erforderlich.

- p = Druck am höchsten Punkt im stehenden Behälter (= maximal zulässiger Druck) in bar
- PP = bei der Druckprüfung aufgebrachter Druck, gemessen an der Stelle "A" (= Prüfdruck gemäß Druckbehälterbuch), in bar
- H = Maximale Füllhöhe (= Füllhöhe bei der Wasserdruckprüfung) in m
- H_F = Maximaler betrieblicher Füllstand (abgesichert durch Füllstandbegrenzer oder vergleichbare Absicherung) des (flüssigen) Betriebsmediums in m
- yp = spezifisches Gewicht des Prüfmediums in dN/dm³ (= 1 bei Wasser)
- γ_F = spezifisches Gewicht des Betriebsmediums in dN/dm³
- Di = Innendurchmesser des Behälters in m
- Fp = Prüfdruckfaktor nach Abschnitt 4.17 bis 4.19
- 4.11 Spätestens bei der Druckprüfung bei mehreren Druckräumen bei der zuletzt durchgeführten muss der Druckbehälter mit der vorgeschriebenen Kennzeichnung (z. B. Fabrikschild) versehen sein. Abweichungen, z. B. bei Emaillierungen, sind in den Prüfunterlagen festzulegen.

- 4.16.2 Steht ein besonderer Raum nicht zur Verfügung, sind geeignete Schutzvorkehrungen zu treffen, z. B. Aufstellen von Schutzwänden. Die nähere Umgebung des zu prüfenden Druckbehälters ist abzusperren und durch Hinweisschilder als Gefahrzone und Sperrgebiet zu kennzeichnen.
- 4.16.3 Es muss möglich sein, den angezeigten Druck aus sicherer Entfernung oder von einer geschützten Stelle aus festzustellen.
- 4.16.4 Die unmitteibare Besichtigung darf in der Regel erst erfolgen, wenn der Druckbehälter ausreichend lange unter Prüfdruck gestanden hat und danach der Druck bei Flüssigkeitsdruckprüfungen auf etwa den maximal zulässigen Druck, bei Gasdruckprüfungen erforderlichenfalls noch weiter auf einen dem Dichtheitsprüfverfahren angepassten Druck abgesenkt wurde.
- 4.17 Bei hydrostatischer Druckpr
 üfung von Druckbeh
 ältern betr
 ägt der in Abschnitt 4.10 einzusetzende Pr
 üfdruckfaktor

$$F_{\rm p} = {\rm max.} \left[1,43; 1,25 + \frac{K_{20}}{K_0} \right]$$

- K₂₀ Festigkeitskennwert nach den AD 2000-Merkblättern der Reihe W für Prüftemperatur 20 [™]C
- K₀ Festigkeitskennwert nach den AD 2000-Merkblättern der Reihe W für die angegebene Bauteilberechnungstemperatur

Bestehen Druckbehälter aus mehreren Werkstoffen und/ oder sind den Bautellen des Druckbehälters unterschiedliche Berechnungstemperaturen zugeordnet, so ist bei der Ermittlung des Prüfdruckfaktors F_P wie folgt vorzugehen:

Warburg den 13. August 2018

E. hij